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Lithium calcium niobium oxide (2/1.5/3/10), Li2Ca1.5Nb3O10,

has been synthesized by conventional solid-state reaction. Its

structure consists of triple-layer perovskite slabs of corner-

sharing NbO6 octahedra interleaved with lithium ions; Ca

cations partially occupy the perovskite A sites at 75%

occupancy probability. All eight atoms in the asymmetric unit

are on special positions: one Nb atom has site symmetry 4/

mmm; the second Nb, both K, the Sr and two O atoms have

site symmetry 4mm; the remaining two O atoms have site

symmetries 2mm. and mmm., respectively.

Related literature

For background to Ruddlesden–Popper layered perovskites,

see: Schaak & Mallouk (2002). Structures of related crystal A-

site deficient three-layer Ruddlesden–Popper phases have

been reported for K2Sr1.5Ta3O10 (Le Berre et al., 2002),

Li4Sr3Nb6O20 (Bhuvanesh et al., 1999a), Li2La1.78Nb0.66-

Ti2.34O10 (Bhuvanesh et al., 1999b) and Li2CaTa2O7 (Liang et

al., 2008). For crystallographic background, see: Howard

(1982); Thompson et al. (1987).

Experimental

Crystal data

Li2Ca1.5Nb3O10

Mr = 512.71
Tetragonal, I4=mmm
a = 3.87880 (6) Å
c = 26.2669 (4) Å
V = 395.19 (1) Å3

Z = 2
Cu K� radiation, � = 1.54060,

1.54443 Å
T = 298 K
flat sheet, 20 � 20 mm

Data collection

PANalytical X’pert PRO
diffractometer

Specimen mounting: packed powder
pellet

Data collection mode: reflection
Scan method: continuous
2�min = 10.004�, 2�max = 129.939�,

2�step = 0.017�

Refinement

Rp = 0.050
Rwp = 0.076
Rexp = 0.009
R(F 2) = 0.068

�2 = 0.706
7056 data points
51 parameters

Table 1
Selected bond lengths (Å).

Nb1—O1i 1.9394 (1)
Nb1—O4 2.027 (11)
Nb2—O2 1.689 (8)
Nb2—O3i 1.9704 (11)
Nb2—O4 2.029 (11)

Ca1—O1ii 2.805 (4)
Ca1—O3ii 2.567 (4)
Ca1—O4iii 2.7427 (1)
Li1—O2 1.599 (4)

Symmetry codes: (i) x; y � 1; z; (ii) x� 1
2; y � 1

2; zþ 1
2; (iii) xþ 1

2; yþ 1
2; z þ 1

2.

Data collection: X’pert Data Collector (PANalytical, 2003); cell

refinement: GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby,

2001); data reduction: X’pert Highscore (PANalytical, 2003); method

used to solve structure: coordinates taken from an isotypic compound

(Bhuvanesh et al., 1999a; Liang et al., 2008); program(s) used to refine

structure: GSAS and EXPGUI; molecular graphics: DIAMOND

(Brandenburg, 1999); software used to prepare material for publi-

cation: publCIF (Westrip, 2010).
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Comment

Layered perovskites that belong to the Ruddlesden-Popper family have a general formula A'2[An-1BnO3n+1] (Schaak et al.,
2002), where B is a small transition metal cation, A is a larger s-, d-, or f-block cation and A' is always an alkali cation.
The Ruddlesden-Popper phases which are intergrowths of the perovskite and rocksalt structures posses a wide variety of in-
teresting properties including superconductivity, colossal magnetoresistance, ferroelectricity, and catalytic activity. Related
crystal structures of A sites deficiency three-layer Ruddlesden-Popper phases have been reported for K2Sr1.5Ta3O10(Le

Berre et al., 2002), Li2La1.78Nb0.66Ti2.34O10 ( Bhuvanesh et al., 1999b), and Li4Sr3Nb6O20 ( Bhuvanesh et al., 1999a).

Fig. 1 shows the observed, calculated and difference plots of the Rietveld refinement. We applied the March-Dollase
formalism for a correction of the 00l preferential orientation which is frequently observed in Rietveld refinement of layered
perovskites.

The structure of the compound is illustrated in Fig. 2. It is formed from two differently stacked NbO6 octahedra thick slabs

cut along the c direction. Two successive layers are shifted by (a+b)/2 with Ca cations partially occupying the 12-coordinated
sites. The Li cations occupy the interlayer spacing at Wyckoff site 8f and not the 4e site since the distance between two
adjacent layers is short. Ca cations partially occupy the perovskite A sites at 75% occupancy probability. The Nb cations are
coordinated by six oxygen atoms to form NbO6 octahedra with Nb—O distances ranging from 1.689 (8) to 2.029 (11) Å.

The octahedra forming the outer layer of the slabs are characterized by off-centering of the Nb atoms, leading to four equal
equatorial Nb—O distances within the perovskite layers [1.9704 (11) Å], a short Nb—O bond toward the interlayer spacing
[1.689 (8) Å], and a long opposite Nb—O bond [2.029 (11) Å]. The octahedra forming the inner layer are less distorted with
four equal equatorial Nb—O distances[1.9394 (1) Å] and other two equal Nb—O distances [2.027 (11) Å] parallel to the c
axis. These type of distorsions are well known in triple-layer perovskites.

Experimental

The sample was prepared by conventional solid-state reaction. Stoichiometric amounts of Li2CO3,CaCO3 and Nb2O5 were

mixed, ground, and calcined at 1423 K for 6 h with one intermediate grid. An excess amount of Li2CO3(20 mol%) was

added to compensate for the loss due to the volatilization of alkali metal carbonate.

Refinement

The crystal structures of Li4Sr3Nb6O20 (Bhuvanesh et al., 1999a) and Li2CaTa2O7 (Liang et al., 2008) were used as a

starting model for the Rietveld refinement. The X-ray powder diffraction patterns of Li2Ca1.5Nb3O10 were indexed in a

body-centered tetragonal space group I4/mmm. Structure refinement was carried out by the Rietveld method using the GSAS
profile refinement program (Larson & Von Dreele, 2004). The site occupancy factors of Ca and Li were set at 0.75 and
0.50, respectively in view of the close ressemblance of the cell parameters with those of the related structures and they were

http://dx.doi.org/10.1107/S160053681100688X
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zhu,%20B.-C.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tang,%20K.-B.
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not further refined. The corresponding isotropic atomic displacement parameters of all oxygen atoms and niobium atoms
were constrained to be equal, respectively. The March-Dollase option in the EXPGUI program (Toby, 2001) was applied
to correct 00l preferential orientation.

Figures

Fig. 1. Experimental and calculated X-ray diffraction pattern of Li2Ca1.5Nb3O10. The differ-
ence profile is given at the bottom. The Bragg positions are indicated by the vertical markers
below the observed pattern.

Fig. 2. The crystal structure of Li2Ca1.5Nb3O10 in a projection along [010].

Lithium calcium niobium oxide (2/1.5/3/10)

Crystal data

Li2Ca1.5Nb3O10 Z = 2

Mr = 512.71 Dx = 4.309 Mg m−3

Tetragonal, I4/mmm Cu Kα radiation, λ = 1.540600, 1.544430 Å
Hall symbol: -I 4 2 T = 298 K
a = 3.87880 (6) Å white
c = 26.2669 (4) Å flat sheet, 20 × 20 mm

V = 395.19 (1) Å3 Specimen preparation: Prepared at 1423 K

Data collection

PANalytical X'pert PRO
diffractometer Data collection mode: reflection

Radiation source: sealed tube Scan method: continuous
graphite 2θmin = 10.004°, 2θmax = 129.939°, 2θstep = 0.017°
Specimen mounting: packed powder pellet

Refinement

Refinement on F2

Profile function: CW Profile function number 2 with
18 terms Profile coefficients for Simpson's rule integ-
ration of pseudovoigt function C.J. Howard (1982).
J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox
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& J.B. Hastings (1987). J. Appl. Cryst.,20,79-83.
#1(GU) = 149.621 #2(GV) = -120.364 #3(GW) =
31.573 #4(LX) = 1.000 #5(LY) = 17.840 #6(trns) =
0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP)
= 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)=
0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) =
0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23)
= 0.000 Peak tails are ignored where the intensity is
below 0.0010 times the peak Aniso. broadening axis
0.0 0.0 1.0

Least-squares matrix: full 51 parameters
Rp = 0.050 0 restraints
Rwp = 0.076 4 constraints

Rexp = 0.009
w = 1/[σ2(Fo

2) + (0.0677P)2]
where P = (Fo

2 + 2Fc
2)/3

R(F2) = 0.06796 (Δ/σ)max = 0.01

χ2 = 0.706

Background function: GSAS Background function
number 1 with 36 terms. Shifted Chebyshev func-
tion of 1st kind 1: 10229.8 2: -3178.07 3: 2423.18
4: -808.112 5: 540.944 6: -198.924 7: 271.065 8:
94.4177 9: 234.644 10: 188.507 11: 146.243 12:
265.504 13: -11.6147 14: 51.8836 15: 137.742 16:
26.3316 17: -53.6065 18: 3.80136 19: 279.859 20:
-56.8162 21: -60.3405 22: 50.5886 23: 41.8504 24:
9.38150 25: -48.8258 26: -20.5686 27: -49.8098 28:
74.7145 29: -37.5745 30: 90.5252 31: -21.2918 32: -
56.1545 33: 0.932266 34: -17.8446 35: -27.9120 36:
-2.66006

7056 data points

Preferred orientation correction: March-Dollase AX-
IS 1 Ratio= 0.89341 h= 0.000 k= 0.000 l= 1.000
Prefered orientation correction range: Min= 0.84444,
Max= 1.40236

Excluded region(s): none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Nb1 0.0 0.0 0.0 0.0112 (3)*
Nb2 0.0 0.0 0.15442 (5) 0.0112 (3)*
Ca1 0.0 0.0 0.5771 (2) 0.0157 (3)* 0.75
O1 0.0 0.5 0.0 0.0132 (3)*
O2 0.0 0.0 0.2187 (3) 0.0132 (3)*
O3 0.0 0.5 0.1412 (2) 0.0132 (3)*
O4 0.0 0.0 0.0772 (4) 0.0132 (3)*
Li1 0.25 0.25 0.25 0.0182 (3)* 0.5

Geometric parameters (Å, °)

Nb1—O1i 1.939400 (30) Ca1—O1ii 2.805 (4)

Nb1—O4 2.027 (11) Ca1—O3ii 2.567 (4)

Nb2—O2 1.689 (8) Ca1—O4iii 2.74272 (4)

Nb2—O3i 1.9704 (11) Li1—O2 1.599 (4)
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Nb2—O4 2.029 (11)

O1i—Nb1—O1 180.0 O1ii—Ca1—O3vi 118.25 (6)

O1i—Nb1—O1iv 90.0 O1ii—Ca1—O4ii 60.74 (21)

O1i—Nb1—O4 90.0 O1ii—Ca1—O4v 119.28 (27)

O2—Nb2—O3i 100.17 (18) O1v—Ca1—O3v 87.19 (9)

O2—Nb2—O4 180.0 O3ii—Ca1—O3v 98.14 (22)

O3i—Nb2—O3 159.7 (4) O3ii—Ca1—O3vi 64.58 (12)

O3i—Nb2—O3iv 88.21 (6) O3ii—Ca1—O4vii 57.70 (19)

O3i—Nb2—O4 79.83 (18) O3ii—Ca1—O4v 122.28 (26)

O1ii—Ca1—O1v 87.49 (16) O4ii—Ca1—O4vii 90.00000 (20)

O1ii—Ca1—O1vi 58.54 (9) O4ii—Ca1—O4iii 180.00000 (30)

O1ii—Ca1—O3v 174.68 (17) O2—Li1—O2viii 180.0
Symmetry codes: (i) x, y−1, z; (ii) x−1/2, y−1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) −y, x, z; (v) x+1/2, y−1/2, z+1/2; (vi) −y+1/2, x−1/
2, z+1/2; (vii) x−1/2, y+1/2, z+1/2; (viii) −x−1/2, −y−1/2, −z−1/2.
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Fig. 1



supplementary materials

sup-6

Fig. 2


